Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication

Bone biology

  • 122 Articles
  • 3 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 11
  • 12
  • 13
  • Next →
Glycoprotein 130 regulates bone turnover and bone size by distinct downstream signaling pathways
Natalie A. Sims, … , Matthias Ernst, T. John Martin
Natalie A. Sims, … , Matthias Ernst, T. John Martin
Published February 1, 2004
Citation Information: J Clin Invest. 2004;113(3):379-389. https://doi.org/10.1172/JCI19872.
View: Text | PDF

Glycoprotein 130 regulates bone turnover and bone size by distinct downstream signaling pathways

  • Text
  • PDF
Abstract

The gp130-dependent cytokines, which signal through at least two intracellular pathways, regulate osteoclast and osteoblast formation. To define their roles in regulating bone mass, we analyzed mice in which gp130 signaling via either the signal transducer and activator of transcription (STAT) 1/3 (gp130ΔSTAT/ΔSTAT) or SHP2/ras/MAPK (gp130Y757F/Y757F) pathway was attenuated. In gp130ΔSTAT/ΔSTAT mice, trabecular bone volume (BV/TV) and turnover were normal, but bone length was reduced by premature growth plate closure, indicating an essential role for gp130-STAT1/3 signaling in chondrocyte differentiation. In contrast, while bone size was normal in gp130Y757F/Y757F mice, BV/TV was reduced due to high bone turnover, indicated by high osteoclast surface/bone surface (OcS/BS) and osteoblast surface/bone surface (ObS/BS). Furthermore, generation of functional osteoclasts from bone marrow of gp130Y757F/Y757F mice was elevated, revealing that while gp130 family cytokines stimulate osteoclastogenesis through the osteoblast lineage, gp130, via SHP2/Ras/MAPK, inhibits osteoclastogenesis in a cell lineage–autonomous manner. Genetic ablation of IL-6 in gp130Y757F/Y757F mice exacerbated this osteopenia by reducing ObS/BS without affecting OcS/BS. Thus, while IL-6 is critical for high bone formation in gp130Y757F/Y757F mice, it is not involved in the increased osteoclastogenesis. In conclusion, gp130 is essential for normal bone growth and trabecular bone mass, with balanced regulation depending on selective activation of STAT1/3 and SHP2/ras/MAPK, respectively. Furthermore, the latter pathway can directly inhibit osteoclastogenesis in vivo.

Authors

Natalie A. Sims, Brendan J. Jenkins, Julian M.W. Quinn, Akira Nakamura, Markus Glatt, Matthew T. Gillespie, Matthias Ernst, T. John Martin

×

Soluble VEGF isoforms are essential for establishingepiphyseal vascularization and regulating chondrocyte development and survival
Christa Maes, … , Roger Bouillon, Geert Carmeliet
Christa Maes, … , Roger Bouillon, Geert Carmeliet
Published January 15, 2004
Citation Information: J Clin Invest. 2004;113(2):188-199. https://doi.org/10.1172/JCI19383.
View: Text | PDF

Soluble VEGF isoforms are essential for establishingepiphyseal vascularization and regulating chondrocyte development and survival

  • Text
  • PDF
Abstract

VEGF is crucial for metaphyseal bone vascularization. In contrast, the angiogenic factors required for vascularization of epiphyseal cartilage are unknown, although this represents a developmentally and clinically important aspect of bone growth. The VEGF gene is alternatively transcribed into VEGF120, VEGF164, and VEGF188 isoforms that differ in matrix association and receptor binding. Their role in bone development was studied in mice expressing single isoforms. Here we report that expression of only VEGF164 or only VEGF188 (in VEGF188/188 mice) was sufficient for metaphyseal development. VEGF188/188 mice, however, showed dwarfism, disrupted development of growth plates and secondary ossification centers, and knee joint dysplasia. This phenotype was at least partly due to impaired vascularization surrounding the epiphysis, resulting in ectopically increased hypoxia and massive chondrocyte apoptosis in the interior of the epiphyseal cartilage. In addition to the vascular defect, we provide in vitro evidence that the VEGF188 isoform alone is also insufficient to regulate chondrocyte proliferation and survival responses to hypoxia. Consistent herewith, chondrocytes in or close to the hypoxic zone in VEGF188/188 mice showed increased proliferation and decreased differentiation. These findings indicate that the insoluble VEGF188 isoform is insufficient for establishing epiphyseal vascularization and regulating cartilage development during endochondral bone formation.

Authors

Christa Maes, Ingrid Stockmans, Karen Moermans, Riet Van Looveren, Nico Smets, Peter Carmeliet, Roger Bouillon, Geert Carmeliet

×

A crucial role for thiol antioxidants in estrogen-deficiency bone loss
Jenny M. Lean, … , Zoë L. Urry, Timothy J. Chambers
Jenny M. Lean, … , Zoë L. Urry, Timothy J. Chambers
Published September 15, 2003
Citation Information: J Clin Invest. 2003;112(6):915-923. https://doi.org/10.1172/JCI18859.
View: Text | PDF

A crucial role for thiol antioxidants in estrogen-deficiency bone loss

  • Text
  • PDF
Abstract

The mechanisms through which estrogen prevents bone loss are uncertain. Elsewhere, estrogen exerts beneficial actions by suppression of reactive oxygen species (ROS). ROS stimulate osteoclasts, the cells that resorb bone. Thus, estrogen might prevent bone loss by enhancing oxidant defenses in bone. We found that glutathione and thioredoxin, the major thiol antioxidants, and glutathione and thioredoxin reductases, the enzymes responsible for maintaining them in a reduced state, fell substantially in rodent bone marrow after ovariectomy and were rapidly normalized by exogenous 17-β estradiol. Moreover, administration of N-acetyl cysteine (NAC) or ascorbate, antioxidants that increase tissue glutathione levels, abolished ovariectomy-induced bone loss, while L-buthionine-(S,R)-sulphoximine (BSO), a specific inhibitor of glutathione synthesis, caused substantial bone loss. The 17-β estradiol increased glutathione and glutathione and thioredoxin reductases in osteoclast-like cells in vitro. Furthermore, in vitro NAC prevented osteoclast formation and NF-κB activation. BSO and hydrogen peroxide did the opposite. Expression of TNF-α, a target for NF-κB and a cytokine strongly implicated in estrogen-deficiency bone loss, was suppressed in osteoclasts by 17-β estradiol and NAC. These observations strongly suggest that estrogen deficiency causes bone loss by lowering thiol antioxidants in osteoclasts. This directly sensitizes osteoclasts to osteoclastogenic signals and entrains ROS-enhanced expression of cytokines that promote osteoclastic bone resorption.

Authors

Jenny M. Lean, Julie T. Davies, Karen Fuller, Christopher J. Jagger, Barrie Kirstein, Geoffrey A. Partington, Zoë L. Urry, Timothy J. Chambers

×

Impaired osteoblastic differentiation, reduced bone formation, and severe osteoporosis in noggin-overexpressing mice
Xue-Bin Wu, … , Mone Zaidi, Etsuko Abe
Xue-Bin Wu, … , Mone Zaidi, Etsuko Abe
Published September 15, 2003
Citation Information: J Clin Invest. 2003;112(6):924-934. https://doi.org/10.1172/JCI15543.
View: Text | PDF

Impaired osteoblastic differentiation, reduced bone formation, and severe osteoporosis in noggin-overexpressing mice

  • Text
  • PDF
Abstract

We describe the effects of the overexpression of noggin, a bone morphogenetic protein (BMP) inhibitor, on osteoblast differentiation and bone formation. Cells of the osteoblast and chondrocyte lineages, as well as bone marrow macrophages, showed intense β-gal histo- or cytostaining in adult noggin+/– mice that had a LacZ transgene inserted at the site of noggin deletion. Despite identical BMP levels, however, osteoblasts of 20-month-old C57BL/6J and 4-month-old senescence-accelerated mice (SAM-P6 mice) had noggin expression levels that were approximately fourfold higher than those of 4-month-old C57BL/6J and SAM-R1 (control) mice, respectively. U-33 preosteoblastic cells overexpressing the noggin gene showed defective maturation and, in parallel, a decreased expression of Runx-2, bone sialoprotein, osteocalcin, and RANK-L. Noggin did not inhibit the ligandless signaling and pro-differentiation action of the constitutively activated BMP receptor type 1A, ca-ALK-3. Transgenic mice overexpressing noggin in mature osteocalcin-positive osteoblasts showed dramatic decreases in bone mineral density and bone formation rates with histological evidence of decreased trabecular bone and CFU-osteoblast colonies at 4 and 8 months. Together, the results provide compelling evidence that noggin, expressed in mature osteoblasts, inhibits osteoblast differentiation and bone formation. Thus, the overproduction of noggin during biological aging may result in impaired osteoblast formation and function and hence, net bone loss.

Authors

Xue-Bin Wu, Yanan Li, Adina Schneider, Wanqin Yu, Gopalan Rajendren, Jameel Iqbal, Matsuo Yamamoto, Mohammad Alam, Lisa J. Brunet, Harry C. Blair, Mone Zaidi, Etsuko Abe

×

FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting
Mara Riminucci, … , Paolo Bianco, Pamela Gehron Robey
Mara Riminucci, … , Paolo Bianco, Pamela Gehron Robey
Published September 1, 2003
Citation Information: J Clin Invest. 2003;112(5):683-692. https://doi.org/10.1172/JCI18399.
View: Text | PDF

FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting

  • Text
  • PDF
Abstract

FGF-23, a novel member of the FGF family, is the product of the gene mutated in autosomal dominant hypophosphatemic rickets (ADHR). FGF-23 has been proposed as a circulating factor causing renal phosphate wasting not only in ADHR (as a result of inadequate degradation), but also in tumor-induced osteomalacia (as a result of excess synthesis by tumor cells). Renal phosphate wasting occurs in approximately 50% of patients with McCune-Albright syndrome (MAS) and fibrous dysplasia of bone (FD), which result from postzygotic mutations of the GNAS1 gene. We found that FGF-23 is produced by normal and FD osteoprogenitors and bone-forming cells in vivo and in vitro. In situ hybridization analysis of FGF-23 mRNA expression identified “fibrous” cells, osteogenic cells, and cells associated with microvascular walls as specific cellular sources of FGF-23 in FD. Serum levels of FGF-23 were increased in FD/MAS patients compared with normal age-matched controls and significantly higher in FD/MAS patients with renal phosphate wasting compared with those without, and correlated with disease burden bone turnover markers commonly used to assess disease activity. Production of FGF-23 by FD tissue may play an important role in the renal phosphate–wasting syndrome associated with FD/MAS.

Authors

Mara Riminucci, Michael T. Collins, Neal S. Fedarko, Natasha Cherman, Alessandro Corsi, Kenneth E. White, Steven Waguespack, Anurag Gupta, Tamara Hannon, Michael J. Econs, Paolo Bianco, Pamela Gehron Robey

×

Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro
I.R. Garrett, … , C.M. Crews, G.R. Mundy
I.R. Garrett, … , C.M. Crews, G.R. Mundy
Published June 1, 2003
Citation Information: J Clin Invest. 2003;111(11):1771-1782. https://doi.org/10.1172/JCI16198.
View: Text | PDF

Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro

  • Text
  • PDF
Abstract

We have found that the ubiquitin-proteasome pathway exerts exquisite control of osteoblast differentiation and bone formation in vitro and in vivo in rodents. Structurally different inhibitors that bind to specific catalytic β subunits of the 20S proteasome stimulated bone formation in bone organ cultures in concentrations as low as 10 nM. When administered systemically to mice, the proteasome inhibitors epoxomicin and proteasome inhibitor–1 increased bone volume and bone formation rates over 70% after only 5 days of treatment. Since the ubiquitin-proteasome pathway has been shown to modulate expression of the Drosophila homologue of the bone morphogenetic protein-2 and -4 (BMP-2 and BMP-4) genes, we examined the effects of noggin, an endogenous inhibitor of BMP-2 and BMP-4 on bone formation stimulated by these compounds and found that it was abrogated. These compounds increased BMP-2 but not BMP-4 or BMP-6 mRNA expression in osteoblastic cells, suggesting that BMP-2 was responsible for the observed bone formation that was inhibited by noggin. We show proteasome inhibitors regulate BMP-2 gene expression at least in part through inhibiting the proteolytic processing of Gli3 protein. Our results suggest that the ubiquitin-proteasome machinery regulates osteoblast differentiation and bone formation and that inhibition of specific components of this system may be useful therapeutically in common diseases of bone loss.

Authors

I.R. Garrett, D. Chen, G. Gutierrez, M. Zhao, A. Escobedo, G. Rossini, S.E. Harris, W. Gallwitz, K.B. Kim, S. Hu, C.M. Crews, G.R. Mundy

×

A functional androgen receptor is not sufficient to allow estradiol to protect bone after gonadectomy in estradiol receptor–deficient mice
Natalie A. Sims, … , Michèle Resche-Rigon, Roland Baron
Natalie A. Sims, … , Michèle Resche-Rigon, Roland Baron
Published May 1, 2003
Citation Information: J Clin Invest. 2003;111(9):1319-1327. https://doi.org/10.1172/JCI17246.
View: Text | PDF

A functional androgen receptor is not sufficient to allow estradiol to protect bone after gonadectomy in estradiol receptor–deficient mice

  • Text
  • PDF
Abstract

Although the role of estradiol in maintaining bone mass is well established, the relative contributions of the estradiol receptors ERα and ERβ and of the androgen receptor (AR) remain controversial. To determine the role of ERα-mediated, ERβ-mediated, and non–ER-mediated mechanisms in maintaining bone mass, gonadectomy and estradiol treatment were studied in ER-knockout mice. Estradiol treatment of ovariectomized ERαβ–/– mice failed to prevent bone loss, precluding significant effects of estradiol on bone through non–ER-signaling pathways. In contrast, estradiol prevented ovariectomy-induced bone loss in ERβ–/– mice, as in WT males and females, indicating that ERα is the major mediator of estradiol effects in bone. No response of bone to estradiol was detected in orchidectomized ERα–/– mice, suggesting estradiol cannot protect bone mass via the AR in vivo. In contrast to female ERαβ–/– and male ERα–/– mice, female ERα–/– mice were partially protected against ovariectomy-induced bone loss by estradiol, confirming that ERβ mediates estradiol effects in bone, but only in females and with a lower efficacy than ERα. We conclude that ERα is the main effector of estradiol’s protective function in bone in both male and female mice, and that, in its absence, AR is not sufficient to mediate this response.

Authors

Natalie A. Sims, Philippe Clément-Lacroix, Dominique Minet, Caroline Fraslon-Vanhulle, Martine Gaillard-Kelly, Michèle Resche-Rigon, Roland Baron

×

Rescue of the skeletal phenotype in CasR-deficient mice by transfer onto the Gcm2 null background
Qisheng Tu, … , Shiguang Liu, L. Darryl Quarles
Qisheng Tu, … , Shiguang Liu, L. Darryl Quarles
Published April 1, 2003
Citation Information: J Clin Invest. 2003;111(7):1029-1037. https://doi.org/10.1172/JCI17054.
View: Text | PDF

Rescue of the skeletal phenotype in CasR-deficient mice by transfer onto the Gcm2 null background

  • Text
  • PDF
Abstract

To understand the role of the calcium-sensing receptor (CasR) in the skeleton, we used a genetic approach to ablate parathyroid glands and remove the confounding effects of elevated parathyroid hormone (PTH) in CasR-deficient mice. CasR deficiency was transferred onto the glial cells missing 2–deficient (Gcm2-deficient) background by intercrossing CasR- and Gcm2-deficient mice. Superimposed Gcm2 deficiency rescued the perinatal lethality in CasR-deficient mice in association with ablation of the parathyroid glands and correction of the severe hyperparathyroidism. In addition, the double homozygous CasR- and Gcm2-deficient mice demonstrated healing of the abnormal mineralization of cartilage and bone associated with CasR deficiency, indicating that rickets and osteomalacia in CasR-deficient mice are not due to an independent function of CasR in bone and cartilage but to the effect of severe hyperparathyroidism in the neonate. Analysis of the skeleton of 6-week-old homozygous CasR- and Gcm2-deficient mice also failed to identify any essential, nonredundant role for CasR in regulating chondrogenesis or osteogenesis, but further studies are needed to establish the function of CasR in the skeleton. In contrast, concomitant Gcm2 and CasR deficiency failed to rescue the hypocalciuria in CasR-deficient mice, consistent with direct regulation of urinary calcium excretion by CasR in the kidney. Double Gcm2- and CasR-deficient mice provide an important model for evaluating the extraparathyroid functions of CasR.

Authors

Qisheng Tu, Min Pi, Gerard Karsenty, Leigh Simpson, Shiguang Liu, L. Darryl Quarles

×

Mechanisms of TNF-α– and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis
Christopher T. Ritchlin, … , David G. Hicks, Edward M. Schwarz
Christopher T. Ritchlin, … , David G. Hicks, Edward M. Schwarz
Published March 15, 2003
Citation Information: J Clin Invest. 2003;111(6):821-831. https://doi.org/10.1172/JCI16069.
View: Text | PDF

Mechanisms of TNF-α– and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis

  • Text
  • PDF
Abstract

Psoriatic arthritis (PsA) is an inflammatory joint disease characterized by extensive bone resorption. The mechanisms underlying this matrix loss have not been elucidated. We report here that blood samples from PsA patients, particularly those with bone erosions visible on plain radiographs, exhibit a marked increase in osteoclast precursors (OCPs) compared with those from healthy controls. Moreover, PsA PBMCs readily formed osteoclasts in vitro without exogenous receptor activator of NF-κB ligand (RANKL) or MCSF. Both osteoprotegerin (OPG) and anti-TNF antibodies inhibited osteoclast formation. Additionally, cultured PsA PBMCs spontaneously secreted higher levels of TNF-α than did healthy controls. In vivo, OCP frequency declined substantially in PsA patients following treatment with anti-TNF agents. Immunohistochemical analysis of subchondral bone and synovium revealed RANK-positive perivascular mononuclear cells and osteoclasts in PsA specimens. RANKL expression was dramatically upregulated in the synovial lining layer, while OPG immunostaining was restricted to the endothelium. These results suggest a model for understanding the pathogenesis of aggressive bone erosions in PsA. OCPs arise from TNF-α–activated PBMCs that migrate to the inflamed synovium and subchondral bone, where they are exposed to unopposed RANKL and TNF-α. This leads to osteoclastogenesis at the erosion front and in subchondral bone, resulting in a bidirectional assault on psoriatic bone.

Authors

Christopher T. Ritchlin, Sally A. Haas-Smith, Ping Li, David G. Hicks, Edward M. Schwarz

×

c-Fms and the αvβ3 integrin collaborate during osteoclast differentiation
Roberta Faccio, … , F. Patrick Ross, Steven L. Teitelbaum
Roberta Faccio, … , F. Patrick Ross, Steven L. Teitelbaum
Published March 1, 2003
Citation Information: J Clin Invest. 2003;111(5):749-758. https://doi.org/10.1172/JCI16924.
View: Text | PDF

c-Fms and the αvβ3 integrin collaborate during osteoclast differentiation

  • Text
  • PDF
Abstract

β3 integrin–null osteoclasts are dysfunctional, but their numbers are increased in vivo. In vitro, however, the number of β3–/– osteoclasts is reduced because of arrested differentiation. This paradox suggests cytokine regulation of β3–/– osteoclastogenesis differs in vitro and in vivo. In vitro, additional MCSF, but not receptor activator of NF-κB ligand (RANKL), completely rescues β3–/– osteoclastogenesis. Similarly, activation of extracellular signal-regulated kinases (ERKs) and expression of c-Fos, both essential for osteoclastogenesis, are attenuated in β3–/– preosteoclasts, but completely restored by additional MCSF. In fact, circulating and bone marrow cell membrane-bound MCSFs are enhanced in β3–/– mice, correlating with the increase in the osteoclast number. To identify components of the MCSF receptor that is critical for osteoclastogenesis in β3–/– cells, we retrovirally transduced authentic osteoclast precursors with chimeric c-Fms constructs containing various cytoplasmic domain mutations. Normalization of osteoclastogenesis and ERK activation, in β3–/– cells, uniquely requires c-Fms tyrosine 697. Finally, like high-dose MCSF, overexpression of c-Fos normalizes the number of β3–/– osteoclasts in vitro, but not their ability to resorb dentin. Thus, while c-Fms and αvβ3 collaborate in the osteoclastogenic process via shared activation of the ERK/c-Fos signaling pathway, the integrin is essential for matrix degradation.

Authors

Roberta Faccio, Sunao Takeshita, Alberta Zallone, F. Patrick Ross, Steven L. Teitelbaum

×
  • ← Previous
  • 1
  • 2
  • …
  • 11
  • 12
  • 13
  • Next →
VEGF plays multiple roles in bone repair
Kai Hu and Bjorn Olsen reveal that osteoblast-derived VEGF serves as a proinflammatory, angiogenic, and osteogenic factor during bone healing…
Published January 5, 2016
Scientific Show StopperBone biology

Fibrin removal paves the way for fracture repair
Masato Yuasa, Nicholas Mignemi, and colleagues reveal that fibrin deposition is dispensable during fracture healing but fibrinolysis is essential for a normal repair process…
Published July 27, 2015
Scientific Show StopperBone biology

Breaking up with glutamine
Courtney Karner and colleagues reveal that WNT signaling mediates bone anabolism through increasing catabolism of glutamine…
Published December 22, 2014
Scientific Show StopperBone biology
Advertisement
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts