Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Sonic Hedgehog repression underlies gigaxonin mutation–induced motor deficits in giant axonal neuropathy
Yoan Arribat, … , Mireille Rossel, Pascale Bomont
Yoan Arribat, … , Mireille Rossel, Pascale Bomont
Published December 2, 2019; First published September 10, 2019
Citation Information: J Clin Invest. 2019;129(12):5312-5326. https://doi.org/10.1172/JCI129788.
View: Text | PDF
Categories: Research Article Neuroscience

Sonic Hedgehog repression underlies gigaxonin mutation–induced motor deficits in giant axonal neuropathy

  • Text
  • PDF
Abstract

Growing evidence shows that alterations occurring at early developmental stages contribute to symptoms manifested in adulthood in the setting of neurodegenerative diseases. Here, we studied the molecular mechanisms causing giant axonal neuropathy (GAN), a severe neurodegenerative disease due to loss-of-function of the gigaxonin–E3 ligase. We showed that gigaxonin governs Sonic Hedgehog (Shh) induction, the developmental pathway patterning the dorso-ventral axis of the neural tube and muscles, by controlling the degradation of the Shh-bound Patched receptor. Similar to Shh inhibition, repression of gigaxonin in zebrafish impaired motor neuron specification and somitogenesis and abolished neuromuscular junction formation and locomotion. Shh signaling was impaired in gigaxonin-null zebrafish and was corrected by both pharmacological activation of the Shh pathway and human gigaxonin, pointing to an evolutionary-conserved mechanism regulating Shh signaling. Gigaxonin-dependent inhibition of Shh activation was also demonstrated in primary fibroblasts from patients with GAN and in a Shh activity reporter line depleted in gigaxonin. Our findings establish gigaxonin as a key E3 ligase that positively controls the initiation of Shh transduction, and reveal the causal role of Shh dysfunction in motor deficits, thus highlighting the developmental origin of GAN.

Authors

Yoan Arribat, Karolina S. Mysiak, Léa Lescouzères, Alexia Boizot, Maxime Ruiz, Mireille Rossel, Pascale Bomont

×

Figure 1

Loss of motility in gan morphants.

Options: View larger image (or click on image) Download as PowerPoint
Loss of motility in gan morphants.
(A) WT and Mis- and MO-injected embry...
(A) WT and Mis- and MO-injected embryos were examined using the touch-response test at 72 hpf. The swimming pattern was recorded as normal, motionless (ML, absence of response), looping (Loop, circular trajectory), and pinwheel (Pinw) (see Supplemental Video 1). (B) Quantification of the percentage of embryos exhibiting the different motor behaviors in the control (n = 139), Mis (n = 66), and MO (n = 60) populations. (C) Tracking analysis of the spontaneous locomotion at 5 dpf. Red and green trajectories correspond to fast and slow swimming, respectively. Motility is abolished in 80% MO-injected larvae. (D) Quantification of the covered distance (top panel) and net velocity (lower panel) during spontaneous locomotion at 5 dpf. Statistics: in the absence of normality of distribution of the data, a Kruskal-Wallis test (Dunn’s post hoc test) was applied; medians with interquartile range, minimum, and maximum values are represented; n = 48 (WT), n = 48 (Mis), n = 49 (MO); NS, not statistically significant; *P < 0.05, **P < 0.01, ***P < 0.001.
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts