Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
β2 adrenergic receptor–mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells
Hemn Mohammadpour, … , Scott I. Abrams, Elizabeth A. Repasky
Hemn Mohammadpour, … , Scott I. Abrams, Elizabeth A. Repasky
Published December 2, 2019; First published September 30, 2019
Citation Information: J Clin Invest. 2019;129(12):5537-5552. https://doi.org/10.1172/JCI129502.
View: Text | PDF
Categories: Research Article Immunology Oncology

β2 adrenergic receptor–mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells

  • Text
  • PDF
Abstract

Catecholamines released by sympathetic nerves can activate adrenergic receptors present on nearly every cell type, including myeloid-derived suppressor cells (MDSCs). Using in vitro systems, murine tumor models in wild-type and genetically modified (β2-AR–/–) mice, and adoptive transfer approaches, we found that the degree of β2-AR signaling significantly influences MDSC frequency and survival in tumors and other tissues. It also modulates their expression of immunosuppressive molecules such as arginase-I and PD-L1 and alters their ability to suppress the proliferation of T cells. The regulatory functions of β2-AR signaling in MDSCs were also found to be dependent upon STAT3 phosphorylation. Moreover, we observed that the β2-AR–mediated increase in MDSC survival is dependent upon Fas-FasL interactions, and this is consistent with gene expression analyses, which reveal a greater expression of apoptosis-related genes in β2-AR–/– MDSCs. Our data reveal the potential of β2-AR signaling to increase the generation of MDSCs from both murine and human peripheral blood cells and that the immunosuppressive function of MDSCs can be mitigated by treatment with β-AR antagonists, or enhanced by β-AR agonists. This strongly supports the possibility that reducing stress-induced activation of β2-ARs could help to overcome immune suppression and enhance the efficacy of immunotherapy and other cancer therapies.

Authors

Hemn Mohammadpour, Cameron R. MacDonald, Guanxi Qiao, Minhui Chen, Bowen Dong, Bonnie L. Hylander, Philip L. McCarthy, Scott I. Abrams, Elizabeth A. Repasky

×

Figure 7

Isoproterenol increases MDSC generation from human PBMCs.

Options: View larger image (or click on image) Download as PowerPoint
Isoproterenol increases MDSC generation from human PBMCs.
(A) Analysis o...
(A) Analysis of β2-AR expression on MDSC surface analyzed by flow cytometry after culturing PBMCs with IL-6 and GM-CSF with or without ISO for 7 days. (B) Analysis of MDSC generation analyzed by flow cytometry after culturing PBMCs with IL-6 and GM-CSF with or without ISO for 7 days. (C) The expression of p-STAT3, PDL-1, and arginase-I after culturing PBMCs with IL-6 and GM-CSF with or without ISO for 7 days. (D) Effects of in vitro differentiated MDSCs in the presence or absence of ISO on allogenic CD4+ or CD8+ T cell proliferation and IFN-γ production. One histogram example corresponding to CD8+ proliferation analyzed by ef670 dilution dye in a ratio of 1:4 is shown. These data are presented as median ± minimum to maximum from 3 biological replicates in all graphs, and the Student’s t test was used to analyze statistical significance between 2 groups. In all panels, *P < 0.05, **P < 0.01, and ***P < 0.001. A P value less than 0.05 was considered significant.
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts