Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Early adaptive immune activation detected in monozygotic twins with prodromal multiple sclerosis
Eduardo Beltrán, … , Reinhard Hohlfeld, Klaus Dornmair
Eduardo Beltrán, … , Reinhard Hohlfeld, Klaus Dornmair
Published November 1, 2019; First published September 30, 2019
Citation Information: J Clin Invest. 2019;129(11):4758-4768. https://doi.org/10.1172/JCI128475.
View: Text | PDF
Categories: Research Article Immunology Neuroscience

Early adaptive immune activation detected in monozygotic twins with prodromal multiple sclerosis

  • Text
  • PDF
Abstract

Multiple sclerosis (MS) is a disabling disease of the CNS. Inflammatory features of MS include lymphocyte accumulations in the CNS and cerebrospinal fluid (CSF). The preclinical events leading to established MS are still enigmatic. Here we compared gene expression patterns of CSF cells from MS-discordant monozygotic twin pairs. Six “healthy” co-twins, who carry a maximal familial risk for developing MS, showed subclinical neuroinflammation (SCNI) with small MRI lesions. Four of these subjects had oligoclonal bands (OCBs). By single-cell RNA sequencing of 2752 CSF cells, we identified clonally expanded CD8+ T cells, plasmablasts, and, to a lesser extent, CD4+ T cells not only from MS patients but also from subjects with SCNI. In contrast to nonexpanded T cells, clonally expanded T cells showed characteristics of activated tissue-resident memory T (TRM) cells. The TRM-like phenotype was detectable already in cells from SCNI subjects but more pronounced in cells from patients with definite MS. Expanded plasmablast clones were detected only in MS and SCNI subjects with OCBs. Our data provide evidence for very early concomitant activation of 3 components of the adaptive immune system in MS, with a notable contribution of clonally expanded TRM-like CD8+ cells.

Authors

Eduardo Beltrán, Lisa Ann Gerdes, Julia Hansen, Andrea Flierl-Hecht, Stefan Krebs, Helmut Blum, Birgit Ertl-Wagner, Frederik Barkhof, Tania Kümpfel, Reinhard Hohlfeld, Klaus Dornmair

×

Figure 6

Violin plots show gene expression of CD8+ T cells on the single-cell level.

Options: View larger image (or click on image) Download as PowerPoint
Violin plots show gene expression of CD8+ T cells on the single-cell lev...
Each dot represents a single cell. Statistically significant gene expression is observed only if a violin-shaped fitting area can be calculated. (A) The homing marker S1PR1 is expressed on all T cells but is downregulated when a cell adopts a TRM phenotype. This is only the case for expanded CD8+ T cells from MS patients. (B) The TRM marker CXCR6 is upregulated only in expanded CD8+ T cells from MS and Enc patients. (C) The marker CXCL16 is the sole ligand of CXCR6. It is upregulated only in DCs and monocytes. (D) CXCL16 is expressed in DCs (left panel) and monocytes (right panel) from all patient groups.
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts