Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Intact HIV-1 proviruses accumulate at distinct chromosomal positions during prolonged antiretroviral therapy
Kevin B. Einkauf, … , Xu G. Yu, Mathias Lichterfeld
Kevin B. Einkauf, … , Xu G. Yu, Mathias Lichterfeld
Published July 29, 2019; First published January 28, 2019
Citation Information: J Clin Invest. 2019;129(3):988-998. https://doi.org/10.1172/JCI124291.
View: Text | PDF
Categories: Research Article AIDS/HIV Infectious disease

Intact HIV-1 proviruses accumulate at distinct chromosomal positions during prolonged antiretroviral therapy

  • Text
  • PDF
Abstract

Chromosomal integration of genome-intact HIV-1 sequences into the host genome creates a reservoir of virally infected cells that persists throughout life, necessitating indefinite antiretroviral suppression therapy. During effective antiviral treatment, the majority of these proviruses remain transcriptionally silent, but mechanisms responsible for viral latency are insufficiently clear. Here, we used matched integration site and proviral sequencing (MIP-Seq), an experimental approach involving multiple displacement amplification of individual proviral species, followed by near-full-length HIV-1 next-generation sequencing and corresponding chromosomal integration site analysis to selectively map the chromosomal positions of intact and defective proviruses in 3 HIV-1–infected individuals undergoing long-term antiretroviral therapy. Simultaneously, chromatin accessibility and gene expression in autologous CD4+ T cells were analyzed by assays for transposase-accessible chromatin using sequencing (ATAC-Seq) and RNA-Seq. We observed that in comparison to proviruses with defective sequences, intact HIV-1 proviruses were enriched for non-genic chromosomal positions and more frequently showed an opposite orientation relative to host genes. In addition, intact HIV-1 proviruses were preferentially integrated in either relative proximity to or increased distance from active transcriptional start sites and to accessible chromatin regions. These studies strongly suggest selection of intact proviruses with features of deeper viral latency during prolonged antiretroviral therapy, and may be informative for targeting the genome-intact viral reservoir.

Authors

Kevin B. Einkauf, Guinevere Q. Lee, Ce Gao, Radwa Sharaf, Xiaoming Sun, Stephane Hua, Samantha M.Y. Chen, Chenyang Jiang, Xiaodong Lian, Fatema Z. Chowdhury, Eric S. Rosenberg, Tae-Wook Chun, Jonathan Z. Li, Xu G. Yu, Mathias Lichterfeld

×

Figure 1

Simultaneous analysis of near-full-length HIV-1 proviral sequences and corresponding HIV-1 integration sites.

Options: View larger image (or click on image) Download as PowerPoint
Simultaneous analysis of near-full-length HIV-1 proviral sequences and c...
(A–C) Horizontal phylogenetic trees of all intact, near-full-length HIV-1 sequences from 3 study participants (P1–P3). Clonal sequences are listed only once; the number of clones is indicated by circular symbols. Chromosomal integration site coordinates (3′-LTR border) for each sequence are indicated.
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts