Transcriptional and post‐translation regulation of the Tiel receptor by fluid shear stress changes in vascular endothelial cells

L Chen-Konak, Y Guetta-Shubin, H Yahav… - The FASEB …, 2003 - Wiley Online Library
L Chen-Konak, Y Guetta-Shubin, H Yahav, A Shay-Salit, M Zilberman, O Binah, N Resnick
The FASEB journal, 2003Wiley Online Library
The interaction between the vascular endothelium and hemodynamic forces (and more
specifically, fluid shear stress), induced by the flow of blood, plays a major role in vascular
remodeling and in new blood vessels formation via a process termed arteriogenesis. Tie1 is
an orphan tyrosine kinase receptor expressed almost exclusively in endothelial cells and is
required for normal vascular development and maintenance. The present study
demonstrates that Tie1 expression is rapidly down‐regulated in endothelial cells exposed to …
Abstract
The interaction between the vascular endothelium and hemodynamic forces (and more specifically, fluid shear stress), induced by the flow of blood, plays a major role in vascular remodeling and in new blood vessels formation via a process termed arteriogenesis. Tie1 is an orphan tyrosine kinase receptor expressed almost exclusively in endothelial cells and is required for normal vascular development and maintenance. The present study demonstrates that Tie1 expression is rapidly down‐regulated in endothelial cells exposed to shear stress, and more so to shear stress changes. This down‐regulation is accompanied by a rapid cleavage of Tie1 and binding of the cleaved Tie1 45 kDa endodomain to Tie2. The rapid cleavage of Tie1 is followed by a transcriptional down‐regulation in response to shear stress. The activity of the Tie1 promoter is suppressed by shear stress and by tumor necrosis factor α. Shear stress‐induced transcriptional suppression of Tie1 is mediated by a negative shear stress response element, localized in a region of 250 bp within the promoter. The rapid down‐regulation of Tie1 by shear stress changes and its rapid binding to Tie2 may be required for destabilization of endothelial cells in order to initiate the process of vascular restructuring.
Wiley Online Library