Diverse roles of hnRNP L in mammalian mRNA processing: a combined microarray and RNAi analysis

LH Hung, M Heiner, J Hui, S Schreiner, V Benes… - Rna, 2008 - rnajournal.cshlp.org
LH Hung, M Heiner, J Hui, S Schreiner, V Benes, A Bindereif
Rna, 2008rnajournal.cshlp.org
Alternative mRNA splicing patterns are determined by the combinatorial control of regulator
proteins and their target RNA sequences. We have recently characterized human hnRNP L
as a global regulator of alternative splicing, binding to diverse C/A-rich elements. To
systematically identify hnRNP L target genes on a genome-wide level, we have combined
splice-sensitive microarray analysis and an RNAi-knockdown approach. As a result, we
describe 11 target genes of hnRNP L that were validated by RT-PCR and that represent …
Alternative mRNA splicing patterns are determined by the combinatorial control of regulator proteins and their target RNA sequences. We have recently characterized human hnRNP L as a global regulator of alternative splicing, binding to diverse C/A-rich elements. To systematically identify hnRNP L target genes on a genome-wide level, we have combined splice-sensitive microarray analysis and an RNAi-knockdown approach. As a result, we describe 11 target genes of hnRNP L that were validated by RT-PCR and that represent several new modes of hnRNP L-dependent splicing regulation, involving both activator and repressor functions: first, intron retention; second, inclusion or skipping of cassette-type exons; third, suppression of multiple exons; and fourth, alternative poly(A) site selection. In sum, this approach revealed a surprising diversity of splicing-regulatory processes as well as poly(A) site selection in which hnRNP L is involved.
rnajournal.cshlp.org