Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics

MP Lutolf, JL Lauer-Fields… - Proceedings of the …, 2003 - National Acad Sciences
MP Lutolf, JL Lauer-Fields, HG Schmoekel, AT Metters, FE Weber, GB Fields, JA Hubbell
Proceedings of the National Academy of Sciences, 2003National Acad Sciences
Synthetic hydrogels have been molecularly engineered to mimic the invasive characteristics
of native provisional extracellular matrices: a combination of integrin-binding sites and
substrates for matrix metalloproteinases (MMP) was required to render the networks
degradable and invasive by cells via cell-secreted MMPs. Degradation of gels was
engineered starting from a characterization of the degradation kinetics (k cat and K m) of
synthetic MMP substrates in the soluble form and after crosslinking into a 3D hydrogel …
Synthetic hydrogels have been molecularly engineered to mimic the invasive characteristics of native provisional extracellular matrices: a combination of integrin-binding sites and substrates for matrix metalloproteinases (MMP) was required to render the networks degradable and invasive by cells via cell-secreted MMPs. Degradation of gels was engineered starting from a characterization of the degradation kinetics (kcat and Km) of synthetic MMP substrates in the soluble form and after crosslinking into a 3D hydrogel network. Primary human fibroblasts were demonstrated to proteolytically invade these networks, a process that depended on MMP substrate activity, adhesion ligand concentration, and network crosslinking density. Gels used to deliver recombinant human bone morphogenetic protein-2 to the site of critical defects in rat cranium were completely infiltrated by cells and remodeled into bony tissue within 4 wk at a dose of 5 μg per defect. Bone regeneration was also shown to depend on the proteolytic sensitivity of the matrices. These hydrogels may be useful in tissue engineering and cell biology as alternatives for naturally occurring extracellular matrix-derived materials such as fibrin or collagen.
National Acad Sciences