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Prediction and cancer
The inception of high-throughput analy-
ses using oligonucleotide microarrays has 
given biologists the ability to globally assess 
RNA levels in a patient’s tumor sample. A 

typical microarray study generates data 
on the expression of the approximately 
20,000 human genes and soon studies will 
be able to analyze the more than 150,000 
splice variants of RNA that are likely to have 
functional roles. The inherent challenge is 
to convert this data into applicable knowl-
edge. A potential strength of the technology 
lies in its ability to uncover complex gene 
interaction patterns and correlate those 
patterns with clinically relevant outcomes. 
This “holy grail” could ultimately predict 
not only the therapeutic response of the 
tumor present in each patient, but also the 
patient's survival, which would subsequent-
ly lead to the development of individualized 
therapy for each patient based both on the 
genetic aberrations in the tumor and on the 

patient’s own genetic makeup. However, 
despite early enthusiasm, there have been 
considerable challenges in converting the 
promise of individualized molecular medi-
cine into clinical practice.

In this issue of the JCI, Glinsky and col-
leagues outline a possible expression signa-
ture comprising 11 genes that has the ability, 
according to the authors’ analysis, to segre-
gate tumor samples from multiple tumor 
lineages into those that have good or poor 
prognoses (1). The authors have applied this 
gene set to multiple tissue types from dispa-
rate data sets and have repeatedly observed 
its predictive power. The application of 
their 11-gene signature to these indepen-
dent sets addresses an analytical limitation 
that is often overlooked when “predictive” 
gene expression signatures are found in 
microarray experiments (2, 3). When thou-
sands of measurements are taken on each 
patient, the number of ways to select some 
of those measurements as a pattern clas-
sifying tumors or predicting outcomes is 
enormous. When selecting multiple gene 
measurements, the probability of finding 
a combination with apparent clinical rel-
evance just by chance is even higher.

This multiple-measurements problem 
can be addressed using a “training and test 
set” approach, wherein predictive models 
are validated on separate, independent 
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data sets of adequate size. However, main-
taining consistency of the thresholds and 
cutoffs used across data sets is fundamen-
tal to this paradigm. If a certain threshold 
is used to indicate a specific change on the 
training set, then it is important that the 
same threshold be used with subsequent 
test sets. While Glinsky et al. (1) do separate 
each data set into training and test sets, 
they require a separate training and test 
set and different cutoffs for each cell lin-
eage and potentially for each RNA analysis 
platform. Since the authors use different 
cutoffs to identify prognosis in different 
data sets, one must remain cautious about 
whether their approach will be generally 
applicable to patient management. Fur-
thermore, splitting a single data set into 2 
smaller sets for training and test purposes 
also introduces statistical and analytical 
challenges, since the smaller data sets will 
have diminished power (4).

Stem cells and cancer progression
A key insight in the Glinsky et al. study (1) 
is the biological motivation driving their 
selection of the gene signature. The authors 
begin with the plausible hypothesis that 
transformed cells, in which self-renewal or 
stem cell–related pathways are activated, 
may contribute to the survival of cancer 
cells in tumors and promote tumor pro-
gression and poor prognosis for patients. 
They apply this idea across species, combin-
ing a study of stem cells in a murine leukemia 
viral-1 (Bmi-1) knockout mouse model with 
a study of primary and metastatic tumors 
in a model of transgenic adenocarcinoma 
of the mouse prostate (TRAMP) in order to 
select genes that consistently display a stem 
cell self-renewal–like expression profile in 

multiple models. This approach builds on 
the paradigm that cancer likely arises in 
a limited population of stem cells. These 
stem cells could potentially have a set of 
common characteristics, and thus gene 
expression patterns, across tumor lineages. 
Characterization of a common expression 
signature with supplemental tissue-specific 
gene changes could reflect the cell of origin 
of a cancer. This concept is compatible with 
the observation that most tumors are less 
differentiated than the putative precursor 
cell and that only a small number of normal 
cells have the potential for self-renewal (5).

Moreover, if this signature can delineate 
those patients whose tumors rely on stem 
cell–like gene expression, then targeting 
those genes within the tumors may result 
in a cell population with limited prolif-
erative potential. There is strong support 
for the hypothesis that the clones that 
initiated the cancer are different from the 
majority of cells within the tumor (6). Dif-
ferent pathways may be activated within 
different clones, and thus therapeutic tar-
geting of these initiating cells may lead to 
a better outcome. Traditional therapies are 
aimed at the rapidly dividing cells within 
the tumor; while these may reduce tumor 
mass, they may not lead to cures.

The significance of the Bmi-1–based 
11-gene signature
Most statisticians (and many biologists) 
are leery of studies that claim to find “gene 
signatures” or “patterns of gene expres-
sion” that can be used to predict clinical 
outcomes across tumor lineages. Much of 
the uneasiness arises because many stud-
ies neglect to precisely define the notion 
of a signature. By contrast, Glinsky and 

colleagues produce a concrete definition 
of a gene signature (1). Their signature is 
defined quantitatively as an 11-dimen-
sional vector of expression fold-change 
values in the base-10 logarithm of 11 genes 
in the peripheral nervous system (PNS) 
neurospheres in the mouse Bmi-1 knock-
out model. Deviations from the average 
expression of these 11 genes in individual 
tumor samples are correlated with this 
11-dimensional vector. While this sig-
nature had classification and predictive 
value when assessed on human tumors, it 
is important to note that other potential 
“stem cell–ness” signatures, such as the 14-
gene group discussed in the study, did not 
demonstrate predictive value.

The transcription factor Bmi-1 appears to 
play a role in gene regulation in both can-
cerous and normal stem cell proliferation 
through epigenetic mechanisms — changes 
that affect gene expression without alter-
ing gene structure, such as methylation or 
acetylation of chromatin. As the authors 
note, Bmi-1 has previously been shown to 
be required for maintenance of self-renew-
ing HSCs (7) and for the self-renewal of leu-
kemic stem cells (8). Bmi-1 has been impli-
cated in extending the replicative potential 
of human fibroblasts through the suppres-
sion of the senescence pathway dependent 
on p16 (a cyclin-dependent kinase inhibi-
tor) in a retinoblastoma protein–depen-
dent manner (9). Further, a deficiency in 
the p16INK4a gene partially reverses the self-
renewal defect in Bmi-1 dominant-nega-
tive neural stem cells (10). Additionally, a 
cooperative interaction between Bmi-1 and 
the oncogene c-myc has been demonstrated, 
through enhancement of mouse embry-
onic fibroblast proliferation, as a result of 

Table 1
Gene expression signature detected by Glinsky et al. (1) and reported to predict good or poor prognosis of patients with multiple types  
of cancer

Affymetrix MG-U74A Mouse UniGene no.  Gene name (HUGO symbol) Signature value
probe set (build 145)   (log10)
94200_at Mm.204730 Gastrulation homeobox 2 (GBX2) 2.3
99457_at Mm.4078 Antigen identified by monoclonal antibody ki-67 (KI67) 2.9
160159_at Mm.260114 Cyclin B1 (CCNB1) 2.5
104097_at Mm.2185 Budding uninhibited by benzimidazoles 1 (BUB1) 2.1
93441_at Mm.373656 Kinetochore-associated protein 2 (KNTC2) 2.0
97960_at Mm.30602 Ubiquitin-specific protease 22 (USP22) 1.9
100901_at Mm.248353 Host cell factor C1 (HCFC1) 1.4
93164_at Mm.31512 Ring finger protein 2 (RNF2) 1.7
98477_s_at Mm.235960 Ankyrin 3 (ANK3, also known as Ankyrin G); ankyrin 3 in mice –0.5
93090_at Mm.16340 Fibroblast growth factor receptor 2 (FGFR2) –0.6
101538_I_at Mm.292803 Carboxylesterase 1 (CES1); carboxylesterase 3 (CES3) in mice –2.7
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inhibiting c-myc–induced apoptosis and 
p19arf (11). It is apparent that the Polycomb 
group gene Bmi-1 is potentially involved in 
various phases of tumorigenesis; therefore, 
the 11-gene expression signature highlight-
ed by Glinsky and colleagues (1), created 
from changes in gene expression induced 
by altering Bmi-1 in different backgrounds 
and validated on data collected by differ-
ent researchers at different times, must be 
taken seriously and subjected to extensive 
evaluation and validation in independent 
laboratories.

The 11-gene signature
At the very least, the 11-gene signature 
suggests the possibility of more accurately 
identifying patients with poor prognoses as 
candidates for more aggressive or investi-
gational therapy. As the mode of treatment 
is different for each tumor lineage, it also 
suggests that the signature truly indicates 
prognosis rather than predicting response 
to therapy. However, it could include a gen-
eral indication of sensitivity to cell death as a 
component of its prognostic load, although 
the individual components of the 11-gene 
signature have not been previously indicated 
as major regulators of cell survival.

The components of this 11-gene set vary 
in function and exist in different pathways 
(see Table 1 for gene names, signatures, 
and values). Both budding uninhibited by 
benzimidazoles 1 (BUB1) and kinetochore-
associated 2 (KNTC2; also known as HEC) 
have been implicated as mitotic checkpoint 

proteins, and as such, aberrations in their 
function could contribute to genomic 
instability and aneuploidy. Mutations in 
the BUB1 gene lead to its inactivation and 
increase microsatellite instability in colon 
cancer as well as a predisposition to certain 
types of cancers (12, 13). Increased gastrula-
tion homeobox 2 (GBX2) expression stim-
ulates growth of human prostate cancer 
cells through upregulation of the gene cod-
ing for IL-6 (14). Overexpression of cyclin 
B1 (CCNB1) levels have been observed in 
high-grade large-cell and small-cell lung 
carcinoma (15) and have been shown to be 
downregulated as a result of p53 induction 
in non–small-cell lung cancer (16). Addi-
tionally, CCNB1 expression was highly cor-
related with the labeling index for antigen 
identified by mAb ki-67 (Ki-67, associated 
with increased tumor cell proliferation), 
which suggests a key role for CCNB1 in the 
regulation of neuroendocrine tumor cell 
proliferation (15). In breast cancer cell lines, 
overexpression of the FGF receptor 2 (FGFR2) 
gene resulted in activation of the MAPK and 
PI3K pathways (17). Interestingly, restora-
tion of this gene product into a malignant 
prostate epithelial cancer cell line, PC3, led 
to suppression of malignancy and restora-
tion of nonmalignant traits. Thus, 3 of the 
11 genes identified in the Glinsky et al. gene 
signature (1) are related to cell proliferation 
and 2 to transition through mitosis. While 
little is known regarding the specific biolog-
ical functions of ubiquitin-specific protease 
22 (USP22), ubiquitin-specific proteases 
have been implicated in control of regula-
tory molecules such as p53 and cyclins (18). 
The ring finger 2 (RNF2) protein is part 
of the Polycomb group of proteins, like 
Bmi-1, that play key roles in hematopoiesis 
and cell-cycle regulation (19). Ankyrins 
are transmembrane proteins shown to be 
involved in cellular functions relating to the 
influx and efflux of sodium and calcium 
(20, 21). Carboxylesterase (CES) enzymes 
are found in many animal species and play 
a role in the hydrolysis of drugs such as ste-
roids and anticancer agents (22). Mutations 
in CES1 have been implicated pharmacoge-
nomically in the activation status of cancer 
drugs and prodrugs (23). At this time, the 
role of host cell factor c1 (HCFC1) in cancer 
has yet to be evaluated; however, as the host 
cell factor family is implicated in immuno-
modulation, it is possible that HCFC1 plays 
a role in limiting the immune response to 
cancer or in the production of cytokines 
such as IL-6 or IL-8, which can contribute 
to neovascularization or tumor growth.

As demonstrated with the prostate cancer 
data set, the 11-gene set can be divided into 
2 groups: those for which elevated expres-
sion levels are associated with stem cell–
ness and a poor prognosis (Ki67, CCNB1, 
GBX2, BUB1, KNTC2, USP22, and RNF2, in 
descending order of strength of association) 
and those for which decreased expression 
levels are associated with stem cell–ness 
and a good prognosis (CES1, FGFR2, and 
ankyrin 3 [ANK3]; see Table 1) (1). High lev-
els of these stem cell–related genes indicate 
a potential for self-renewal within tumors 
and for increased tumor aggressiveness 
within patients. Intriguingly, those genes 
that are positively associated with tumor 
cell proliferation (Ki67, CCNB1, and GBX2) 
and with the mitotic spindle (BUB1 and 
KNTC2) are also positively associated with 
the stem cell–ness signature. FGFR2, which 
has been shown to decrease the growth of 
prostate cancer cells, is negatively associ-
ated with the stem cell–ness signature. The 
association between this 11-gene signature 
and good and poor prognosis therefore 
makes sense, at least for those genes that 
have been characterized as associated with 
the behavior of cancer cells.

While the relevance to cancer progres-
sion and malignancy has been studied and 
even established in certain members of this 
11-gene set, others have yet to be studied in 
detail. This underscores another strength of 
high-throughput analysis: the use of such a 
global approach may identify new and unex-

Table 2
Probe sets on the Affymetrix U95Av2 
array representing the 11 genes

U95Av2 probe set Gene
33688_at GBX2
418_at MKI67
419_at MKI67
1945_at CCNB1
34736_at CCNB1
41081_at BUB1
35699_at BUB1
40041_at KNTC2
39866_at USP22
37910_at HCFC1
33484_at RNF2
36965_at ANK3
36966_at ANK3
36967_g_at ANK3
1363_at FGFR2
1970_s_at FGFR2
34354_at FGFR2
37203_at CES1

Figure 1
Stem cell–positive samples correlate with 
poor prognosis in lung adenocarcinoma 
patients. Cox proportional hazards model of 
lung cancer patients (n = 125) using the SPAI 
confirmed the correlation between patient 
samples with stem cell–like expression pat-
tern and poor overall survival (P = 0.0179). 
Analysis based on patient data from the lung 
cancer study by Bhattacharjee et al. (26).
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pected targets for study, some of which may 
prove to be potential therapeutic targets. 
The inclusion of genes involved in cancer 
cell proliferation as well as unexplored genes 
within this predictive group suggests that 
further analysis into their mechanisms and 
potential involvement in signaling pathways 
germane to cancer is warranted.

Can their analysis be replicated?
In many microarray studies, how the data 
are analyzed may be more important than 
how they were generated. It is therefore 
incumbent upon researchers to describe 
their analytical methods in enough detail 
to allow independent researchers to repli-
cate their computations on the same data. 
Ideally, these details take the form of pre-
cise equations or algorithms or the actual 
code used to analyze the data (24–26).  
Although the Glinsky et al. study (1) 
reports many of the critical values needed 
to replicate their results, their reliance on 
purely verbal descriptions leaves room for 
some ambiguity.

We attempted to replicate part of their 
analysis and turned our attention to the 
same lung cancer study used by the authors 
(27), which included survival data on 125 
patients and microarray data from Affyme-
trix U95Av2 GeneChips. Our estimate of 
the standard gene expression signature is 
listed in Table 1. Because of redundancy, 
a total of 18 probe sets represent these 11 
genes on the U95Av2 array (Table 2). We 
used all 18 probe sets, which expanded the 
fixed gene signature vector from Table 1 
into an 18-dimensional vector. For each of 
the 18 probe sets, we computed the average 
expression over all 125 samples. We divided 
the expression vectors in individual tumor 
samples by the average expression value 
and then transformed the ratios by com-
puting the base-10 logarithm, producing 
18-dimensional vectors. We then computed 
the Pearson correlation coefficient between 
the fixed gene expression signature vector 
and the individual vector of log ratios. This 
procedure yielded 1 number, xi, for each 
tumor sample i = 1, . . . , 125, which repre-
sented our best estimate of the stem cell–
like phenotype association index (SPAI) 
described in the Glinsky et al. study (1).

We used SPAI as a continuous covari-
ate in a Cox proportional hazards model 
to predict survival in the full data set and 
found that SPAI was significant (likelihood 
ratio test, P = 0.0179). Because the coeffi-
cient xi in the model was positive (0.798), 
higher values of SPAI were associated with 

shorter survival. Using trial and error, we 
determined a threshold on the full data 
set that, when used to split the samples 
into 2 groups, yielded the best results in 
a survival analysis. The optimum thresh-
old occurred at 0.32 and separated the 
data into 40 samples with a stem cell–like 
profile (xi > 0.32) and 85 samples without 
a stem cell–like profile. To this extent, we 
were able to confirm the analysis reported 
by Glinsky et al. (Figure 1).

Based on this preliminary attempt to rep-
licate the authors’ analyses, we believe that 
their results should be greeted with cautious 
optimism. However, we were unable to vali-
date their method when splitting the data 
multiple times into training and test sets. 
Our splits were more challenging than the 
ones used by the authors, since we did not 
use outcome information to balance the 
splits. It is also not clear whether we followed 
the same procedure for computing the SPAI 
that was used by Glinsky et al. (1).

Conclusions
Glinsky and colleagues (1) have produced 
a stimulating analysis of a collection of 
microarray data experiments. Using ideas 
that were well motivated by the underlying 
biology and combining data across species 
from 2 different microarray studies, they 
identified an 11-gene signature that might 
be related to tumor behavior, and thus 
patient survival, in cancer. In order to vali-
date this signature, they tested it retrospec-
tively in a broad spectrum of microarray 
studies of different kinds of cancer.

In our hands, unsupervised analyses of 
expression levels across some of the same 
data sets used by Glinsky and colleagues (1) 
did not reveal any clinically relevant or sta-
tistically significant correlations with out-
come. By introducing a weighting coeffi-
cient into their predictor model, they are in 
fact adding an element of supervision into 
the analysis. Further, as these coefficients 
are re-derived on each subsequent data set, 
the statistical and analytical issues incum-
bent with high-throughput technologies 
are insufficiently addressed (2).

Glinsky et al. proposed several models, 
but only the 11-gene metastatic TRAMP 
tumor sample/PNS set consistently dif-
ferentiated samples in a clinically relevant 
manner (1). An important aspect of this 
gene set and the corresponding coeffi-
cients used in determining the weighted 
survival predictor is that those genes that 
have been previously identified as poten-
tial indicators of poor prognosis are given 

the greatest coefficients. That is, negative 
weighting correlates with longer survival. 
For example, in the prostate cancer SPAI, 
the authors assign the largest coefficient 
value to Ki-67, which is associated with 
increased proliferation in cancer and could 
therefore lead to greater aggressiveness and 
poorer prognosis.

In the search for a powerfully predictive 
set of cancer genes, there have been various 
signatures proposed that contain anywhere 
from 10–100 genes. However, recent stud-
ies have cast doubt on the power of those 
sets that were validated within a single data 
set or even a single tumor type (2–4). As 
such, the need for validation of a proposed 
gene expression signature across indepen-
dent data sets is warranted. To their credit, 
Glinsky and colleagues have gone to great 
lengths to validate their 11-gene signature, 
albeit in a supervised manner, across mul-
tiple tumor samples and multiple tissue 
types. As researchers begin to question the 
results reported from microarray studies 
(2–4, 28), the need for replicable analyses 
and independent corroboration grows 
more acute. Regardless of whether it was 
said by Niels Bohr or Yogi Berra, it is still 
the case that “Prediction is very difficult, 
especially about the future.”
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Toward improved immunocompetence  
of adoptively transferred CD8+ T cells
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Adoptive transfer of autologous or allogenic T cells to patients is being used 
with increased frequency as a therapy for infectious diseases and cancer. 
However, many questions remain with regard to defining optimized proce-
dures for preparation and selection of T cell populations for transfer. In a 
new study in this issue of the JCI, Gattinoni and colleagues used a TCR trans-
genic mouse model to examine in vitro–generated tumor antigen–specific 
CD8+ T cells at various stages of differentiation for their efficacy in adoptive 
immunotherapy against transplantable melanoma (see the related article 
beginning on page 1616). The results confirm that CD8+ T cells progressive-
ly lose immunocompetence with prolonged in vitro cultivation and suggest 
that effector CD8+ T cells alone may be considerably less potent at protecting 
hosts with advanced tumors than are less differentiated T cells.
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In addition to the well-established donor 
lymphocyte infusion (DLI) approach to 
treating leukemia relapse after HSC trans-
plantation, adoptive cell transfer therapy 
(ACT) is also being developed to treat EBV- 
and CMV-associated diseases, and more 
recent initiatives have focused on the use 
of ACT to treat solid human cancers, pri-
marily melanoma (1–5). Unfortunately, 
in vitro–cultured antigen-specific T cells, 

particularly T cell clones, often die only a 
few hours after adaptive transfer and gen-
erally do not survive more than a matter of 
days, which limits treatment efficacy (6, 7). 
By contrast, T cells adoptively transferred 
directly from donor to recipient show 
increased survival rates and are more likely 
to become immunoprotective; this has 
been confirmed by transfer experiments 
using T cells from TCR transgenic mice, 
which provide unprecedented amounts of 
naive antigen-specific donor T cells and 
thus circumvent the need for in vitro T 
cell cultivation (8). In humans, the most 
durable form of ACT is DLI, which usu-
ally involves direct peripheral wbc transfer 
from the allogenic donor to the leukemia 
patient who has previously received HSCs 

from the same donor. Most patients with 
solid tumors, however, have never under-
gone allogenic stem cell transplantation 
and thus cannot receive donor cells, but 
instead depend on transfer of autologous 
cells. These cells must be selected and/or 
enriched in cell cultures in order to obtain 
large numbers of T cells with appropriate 
antigen specificity. One of the great chal-
lenges in ACT lies in the development of 
optimal procedures for lymphocyte selec-
tion and preparation.

T cell differentiation
The study by Gattinoni et al. (9) in this 
issue of the JCI addresses the question of 
whether progressive CD8+ T cell differen-
tiation toward an effector T cell pheno-
type is associated with changes in the cells’ 
capacity to protect the host from disease. 
The study provides detailed insight into 
the relationship among the duration of in 
vitro T cell culture, the functional and phe-
notypic characteristics of T cells at various 
stages of differentiation, and their immu-
nocompetence upon adoptive transfer. The 
authors performed sequential rounds of in 
vitro stimulation in order to promote pro-
gressive CD8+ T cell differentiation. The 
longer the T cells were stimulated and cul-
tured in vitro, the more they acquired the 


